Copied to
clipboard

?

G = C10×C8.C22order 320 = 26·5

Direct product of C10 and C8.C22

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C10×C8.C22, C40.50C23, C20.83C24, Q163(C2×C10), C4.67(D4×C10), (C2×Q16)⋊11C10, (C10×Q16)⋊25C2, SD162(C2×C10), (C2×SD16)⋊5C10, (C2×C20).526D4, C20.330(C2×D4), C8.1(C22×C10), C4.6(C23×C10), (C22×Q8)⋊9C10, C23.51(C5×D4), (C10×SD16)⋊16C2, (C2×M4(2))⋊4C10, M4(2)⋊4(C2×C10), (Q8×C10)⋊55C22, (C5×Q16)⋊17C22, D4.3(C22×C10), (C5×D4).36C23, C22.24(D4×C10), (C5×Q8).37C23, Q8.3(C22×C10), (C10×M4(2))⋊14C2, (C2×C40).280C22, (C2×C20).976C23, (C5×SD16)⋊18C22, (C22×C10).173D4, C10.204(C22×D4), (D4×C10).329C22, (C5×M4(2))⋊30C22, (C22×C20).466C22, (Q8×C2×C10)⋊21C2, C2.28(D4×C2×C10), (C2×C8).32(C2×C10), (C2×Q8)⋊15(C2×C10), (C2×C4).137(C5×D4), (C10×C4○D4).26C2, (C2×C4○D4).12C10, C4○D4.13(C2×C10), (C2×D4).75(C2×C10), (C2×C10).420(C2×D4), (C22×C4).77(C2×C10), (C2×C4).46(C22×C10), (C5×C4○D4).58C22, SmallGroup(320,1576)

Series: Derived Chief Lower central Upper central

C1C4 — C10×C8.C22
C1C2C4C20C5×D4C5×SD16C5×C8.C22 — C10×C8.C22
C1C2C4 — C10×C8.C22
C1C2×C10C22×C20 — C10×C8.C22

Subgroups: 370 in 258 conjugacy classes, 162 normal (30 characteristic)
C1, C2, C2 [×2], C2 [×4], C4 [×2], C4 [×2], C4 [×6], C22, C22 [×2], C22 [×6], C5, C8 [×4], C2×C4 [×2], C2×C4 [×4], C2×C4 [×11], D4 [×2], D4 [×5], Q8 [×6], Q8 [×7], C23, C23, C10, C10 [×2], C10 [×4], C2×C8 [×2], M4(2) [×4], SD16 [×8], Q16 [×8], C22×C4, C22×C4 [×2], C2×D4, C2×D4, C2×Q8, C2×Q8 [×6], C2×Q8 [×3], C4○D4 [×4], C4○D4 [×2], C20 [×2], C20 [×2], C20 [×6], C2×C10, C2×C10 [×2], C2×C10 [×6], C2×M4(2), C2×SD16 [×2], C2×Q16 [×2], C8.C22 [×8], C22×Q8, C2×C4○D4, C40 [×4], C2×C20 [×2], C2×C20 [×4], C2×C20 [×11], C5×D4 [×2], C5×D4 [×5], C5×Q8 [×6], C5×Q8 [×7], C22×C10, C22×C10, C2×C8.C22, C2×C40 [×2], C5×M4(2) [×4], C5×SD16 [×8], C5×Q16 [×8], C22×C20, C22×C20 [×2], D4×C10, D4×C10, Q8×C10, Q8×C10 [×6], Q8×C10 [×3], C5×C4○D4 [×4], C5×C4○D4 [×2], C10×M4(2), C10×SD16 [×2], C10×Q16 [×2], C5×C8.C22 [×8], Q8×C2×C10, C10×C4○D4, C10×C8.C22

Quotients:
C1, C2 [×15], C22 [×35], C5, D4 [×4], C23 [×15], C10 [×15], C2×D4 [×6], C24, C2×C10 [×35], C8.C22 [×2], C22×D4, C5×D4 [×4], C22×C10 [×15], C2×C8.C22, D4×C10 [×6], C23×C10, C5×C8.C22 [×2], D4×C2×C10, C10×C8.C22

Generators and relations
 G = < a,b,c,d | a10=b8=c2=d2=1, ab=ba, ac=ca, ad=da, cbc=b3, dbd=b5, dcd=b4c >

Smallest permutation representation
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 135 62 125 54 119 50 147)(2 136 63 126 55 120 41 148)(3 137 64 127 56 111 42 149)(4 138 65 128 57 112 43 150)(5 139 66 129 58 113 44 141)(6 140 67 130 59 114 45 142)(7 131 68 121 60 115 46 143)(8 132 69 122 51 116 47 144)(9 133 70 123 52 117 48 145)(10 134 61 124 53 118 49 146)(11 75 39 81 29 91 160 103)(12 76 40 82 30 92 151 104)(13 77 31 83 21 93 152 105)(14 78 32 84 22 94 153 106)(15 79 33 85 23 95 154 107)(16 80 34 86 24 96 155 108)(17 71 35 87 25 97 156 109)(18 72 36 88 26 98 157 110)(19 73 37 89 27 99 158 101)(20 74 38 90 28 100 159 102)
(11 39)(12 40)(13 31)(14 32)(15 33)(16 34)(17 35)(18 36)(19 37)(20 38)(21 152)(22 153)(23 154)(24 155)(25 156)(26 157)(27 158)(28 159)(29 160)(30 151)(41 63)(42 64)(43 65)(44 66)(45 67)(46 68)(47 69)(48 70)(49 61)(50 62)(71 97)(72 98)(73 99)(74 100)(75 91)(76 92)(77 93)(78 94)(79 95)(80 96)(111 149)(112 150)(113 141)(114 142)(115 143)(116 144)(117 145)(118 146)(119 147)(120 148)(121 131)(122 132)(123 133)(124 134)(125 135)(126 136)(127 137)(128 138)(129 139)(130 140)
(1 79)(2 80)(3 71)(4 72)(5 73)(6 74)(7 75)(8 76)(9 77)(10 78)(11 121)(12 122)(13 123)(14 124)(15 125)(16 126)(17 127)(18 128)(19 129)(20 130)(21 145)(22 146)(23 147)(24 148)(25 149)(26 150)(27 141)(28 142)(29 143)(30 144)(31 117)(32 118)(33 119)(34 120)(35 111)(36 112)(37 113)(38 114)(39 115)(40 116)(41 108)(42 109)(43 110)(44 101)(45 102)(46 103)(47 104)(48 105)(49 106)(50 107)(51 92)(52 93)(53 94)(54 95)(55 96)(56 97)(57 98)(58 99)(59 100)(60 91)(61 84)(62 85)(63 86)(64 87)(65 88)(66 89)(67 90)(68 81)(69 82)(70 83)(131 160)(132 151)(133 152)(134 153)(135 154)(136 155)(137 156)(138 157)(139 158)(140 159)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,135,62,125,54,119,50,147)(2,136,63,126,55,120,41,148)(3,137,64,127,56,111,42,149)(4,138,65,128,57,112,43,150)(5,139,66,129,58,113,44,141)(6,140,67,130,59,114,45,142)(7,131,68,121,60,115,46,143)(8,132,69,122,51,116,47,144)(9,133,70,123,52,117,48,145)(10,134,61,124,53,118,49,146)(11,75,39,81,29,91,160,103)(12,76,40,82,30,92,151,104)(13,77,31,83,21,93,152,105)(14,78,32,84,22,94,153,106)(15,79,33,85,23,95,154,107)(16,80,34,86,24,96,155,108)(17,71,35,87,25,97,156,109)(18,72,36,88,26,98,157,110)(19,73,37,89,27,99,158,101)(20,74,38,90,28,100,159,102), (11,39)(12,40)(13,31)(14,32)(15,33)(16,34)(17,35)(18,36)(19,37)(20,38)(21,152)(22,153)(23,154)(24,155)(25,156)(26,157)(27,158)(28,159)(29,160)(30,151)(41,63)(42,64)(43,65)(44,66)(45,67)(46,68)(47,69)(48,70)(49,61)(50,62)(71,97)(72,98)(73,99)(74,100)(75,91)(76,92)(77,93)(78,94)(79,95)(80,96)(111,149)(112,150)(113,141)(114,142)(115,143)(116,144)(117,145)(118,146)(119,147)(120,148)(121,131)(122,132)(123,133)(124,134)(125,135)(126,136)(127,137)(128,138)(129,139)(130,140), (1,79)(2,80)(3,71)(4,72)(5,73)(6,74)(7,75)(8,76)(9,77)(10,78)(11,121)(12,122)(13,123)(14,124)(15,125)(16,126)(17,127)(18,128)(19,129)(20,130)(21,145)(22,146)(23,147)(24,148)(25,149)(26,150)(27,141)(28,142)(29,143)(30,144)(31,117)(32,118)(33,119)(34,120)(35,111)(36,112)(37,113)(38,114)(39,115)(40,116)(41,108)(42,109)(43,110)(44,101)(45,102)(46,103)(47,104)(48,105)(49,106)(50,107)(51,92)(52,93)(53,94)(54,95)(55,96)(56,97)(57,98)(58,99)(59,100)(60,91)(61,84)(62,85)(63,86)(64,87)(65,88)(66,89)(67,90)(68,81)(69,82)(70,83)(131,160)(132,151)(133,152)(134,153)(135,154)(136,155)(137,156)(138,157)(139,158)(140,159)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,135,62,125,54,119,50,147)(2,136,63,126,55,120,41,148)(3,137,64,127,56,111,42,149)(4,138,65,128,57,112,43,150)(5,139,66,129,58,113,44,141)(6,140,67,130,59,114,45,142)(7,131,68,121,60,115,46,143)(8,132,69,122,51,116,47,144)(9,133,70,123,52,117,48,145)(10,134,61,124,53,118,49,146)(11,75,39,81,29,91,160,103)(12,76,40,82,30,92,151,104)(13,77,31,83,21,93,152,105)(14,78,32,84,22,94,153,106)(15,79,33,85,23,95,154,107)(16,80,34,86,24,96,155,108)(17,71,35,87,25,97,156,109)(18,72,36,88,26,98,157,110)(19,73,37,89,27,99,158,101)(20,74,38,90,28,100,159,102), (11,39)(12,40)(13,31)(14,32)(15,33)(16,34)(17,35)(18,36)(19,37)(20,38)(21,152)(22,153)(23,154)(24,155)(25,156)(26,157)(27,158)(28,159)(29,160)(30,151)(41,63)(42,64)(43,65)(44,66)(45,67)(46,68)(47,69)(48,70)(49,61)(50,62)(71,97)(72,98)(73,99)(74,100)(75,91)(76,92)(77,93)(78,94)(79,95)(80,96)(111,149)(112,150)(113,141)(114,142)(115,143)(116,144)(117,145)(118,146)(119,147)(120,148)(121,131)(122,132)(123,133)(124,134)(125,135)(126,136)(127,137)(128,138)(129,139)(130,140), (1,79)(2,80)(3,71)(4,72)(5,73)(6,74)(7,75)(8,76)(9,77)(10,78)(11,121)(12,122)(13,123)(14,124)(15,125)(16,126)(17,127)(18,128)(19,129)(20,130)(21,145)(22,146)(23,147)(24,148)(25,149)(26,150)(27,141)(28,142)(29,143)(30,144)(31,117)(32,118)(33,119)(34,120)(35,111)(36,112)(37,113)(38,114)(39,115)(40,116)(41,108)(42,109)(43,110)(44,101)(45,102)(46,103)(47,104)(48,105)(49,106)(50,107)(51,92)(52,93)(53,94)(54,95)(55,96)(56,97)(57,98)(58,99)(59,100)(60,91)(61,84)(62,85)(63,86)(64,87)(65,88)(66,89)(67,90)(68,81)(69,82)(70,83)(131,160)(132,151)(133,152)(134,153)(135,154)(136,155)(137,156)(138,157)(139,158)(140,159) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,135,62,125,54,119,50,147),(2,136,63,126,55,120,41,148),(3,137,64,127,56,111,42,149),(4,138,65,128,57,112,43,150),(5,139,66,129,58,113,44,141),(6,140,67,130,59,114,45,142),(7,131,68,121,60,115,46,143),(8,132,69,122,51,116,47,144),(9,133,70,123,52,117,48,145),(10,134,61,124,53,118,49,146),(11,75,39,81,29,91,160,103),(12,76,40,82,30,92,151,104),(13,77,31,83,21,93,152,105),(14,78,32,84,22,94,153,106),(15,79,33,85,23,95,154,107),(16,80,34,86,24,96,155,108),(17,71,35,87,25,97,156,109),(18,72,36,88,26,98,157,110),(19,73,37,89,27,99,158,101),(20,74,38,90,28,100,159,102)], [(11,39),(12,40),(13,31),(14,32),(15,33),(16,34),(17,35),(18,36),(19,37),(20,38),(21,152),(22,153),(23,154),(24,155),(25,156),(26,157),(27,158),(28,159),(29,160),(30,151),(41,63),(42,64),(43,65),(44,66),(45,67),(46,68),(47,69),(48,70),(49,61),(50,62),(71,97),(72,98),(73,99),(74,100),(75,91),(76,92),(77,93),(78,94),(79,95),(80,96),(111,149),(112,150),(113,141),(114,142),(115,143),(116,144),(117,145),(118,146),(119,147),(120,148),(121,131),(122,132),(123,133),(124,134),(125,135),(126,136),(127,137),(128,138),(129,139),(130,140)], [(1,79),(2,80),(3,71),(4,72),(5,73),(6,74),(7,75),(8,76),(9,77),(10,78),(11,121),(12,122),(13,123),(14,124),(15,125),(16,126),(17,127),(18,128),(19,129),(20,130),(21,145),(22,146),(23,147),(24,148),(25,149),(26,150),(27,141),(28,142),(29,143),(30,144),(31,117),(32,118),(33,119),(34,120),(35,111),(36,112),(37,113),(38,114),(39,115),(40,116),(41,108),(42,109),(43,110),(44,101),(45,102),(46,103),(47,104),(48,105),(49,106),(50,107),(51,92),(52,93),(53,94),(54,95),(55,96),(56,97),(57,98),(58,99),(59,100),(60,91),(61,84),(62,85),(63,86),(64,87),(65,88),(66,89),(67,90),(68,81),(69,82),(70,83),(131,160),(132,151),(133,152),(134,153),(135,154),(136,155),(137,156),(138,157),(139,158),(140,159)])

Matrix representation G ⊆ GL6(𝔽41)

3100000
0310000
0037000
0003700
0000370
0000037
,
10370000
15310000
0034272020
0014342120
00714714
00277277
,
100000
5400000
001000
0004000
00400400
000101
,
4000000
0400000
001020
000102
0000400
0000040

G:=sub<GL(6,GF(41))| [31,0,0,0,0,0,0,31,0,0,0,0,0,0,37,0,0,0,0,0,0,37,0,0,0,0,0,0,37,0,0,0,0,0,0,37],[10,15,0,0,0,0,37,31,0,0,0,0,0,0,34,14,7,27,0,0,27,34,14,7,0,0,20,21,7,27,0,0,20,20,14,7],[1,5,0,0,0,0,0,40,0,0,0,0,0,0,1,0,40,0,0,0,0,40,0,1,0,0,0,0,40,0,0,0,0,0,0,1],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,2,0,40,0,0,0,0,2,0,40] >;

110 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E···4J5A5B5C5D8A8B8C8D10A···10L10M···10T10U···10AB20A···20P20Q···20AN40A···40P
order1222222244444···45555888810···1010···1010···1020···2020···2040···40
size1111224422224···4111144441···12···24···42···24···44···4

110 irreducible representations

dim11111111111111222244
type+++++++++-
imageC1C2C2C2C2C2C2C5C10C10C10C10C10C10D4D4C5×D4C5×D4C8.C22C5×C8.C22
kernelC10×C8.C22C10×M4(2)C10×SD16C10×Q16C5×C8.C22Q8×C2×C10C10×C4○D4C2×C8.C22C2×M4(2)C2×SD16C2×Q16C8.C22C22×Q8C2×C4○D4C2×C20C22×C10C2×C4C23C10C2
# reps1122811448832443112428

In GAP, Magma, Sage, TeX

C_{10}\times C_8.C_2^2
% in TeX

G:=Group("C10xC8.C2^2");
// GroupNames label

G:=SmallGroup(320,1576);
// by ID

G=gap.SmallGroup(320,1576);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-5,-2,-2,1149,1128,3446,10085,5052,124]);
// Polycyclic

G:=Group<a,b,c,d|a^10=b^8=c^2=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^3,d*b*d=b^5,d*c*d=b^4*c>;
// generators/relations

׿
×
𝔽